U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

2012

Comments

Published in American Journal of Botany 99(4): 629–639. 2012.
doi: 10.3732/ajb.1100417

Abstract

Premise of study: Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments.

Methods: We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use effi ciency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use effi ciency.

Key results: Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic.

Conclusions: Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability.

Share

COinS