U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

2011

Citation

Field Crops Research 120 (2011) 254–261; doi:10.1016/j.fcr.2010.10.011

Abstract

No-till dryland winter wheat (Triticum aestivum L.)-fallow systems in the central Great Plains have more water available for crop production than the traditional conventionally tilled winter wheat-fallow systems because of greater precipitation storage efficiency. That additional water is used most efficiently when a crop is present to transpire the water, and crop yields respond positively to increases in available soil water. The objective of this study was to evaluate yield, water use efficiency (WUE), precipitation use efficiency (PUE), and net returns of cropping systems where crop choice was based on established crop responses to water use while incorporating a grass/broadleaf rotation. Available soil water at planting was measured at several decision points each year and combined with three levels of expected growing season precipitation (70, 100, 130% of average) to provide input data for water use/yield production functions for seven grain crops and three forage crops. The predicted yields from those production functions were compared against established yield thresholds for each crop, and crops were retained for further consideration if the threshold yield was exceeded. Crop choice was then narrowed by following a rule which rotated summer crops (crops planted in the spring with most of their growth occurring during summer months) with winter crops (crops planted in the fall with most of their growth occurring during the next spring) and also rotating grasses with broadleaf crops. Yields, WUE, PUE, value-basis precipitation use efficiency ($PUE), gross receipts, and net returns from the four opportunity cropping (OC) selection schemes were compared with the same quantities from four set rotations [wheat-fallow (conventional till), (WF (CT)); wheat-fallow (no-till), (WF (NT)); wheat–corn (Zea mays L.)-fallow (no-till), (WCF); wheat–millet (Panicum miliaceum L.) (no-till), (WM)]. Water use efficiency was greater for three of the OC selection schemes than for any of the four set rotations. Precipitation was used more efficiently using two of the OC selection schemes than using any of the four set rotations. Of the four OC cropping decision methods, net returns were greatest for the method that assumed average growing season precipitation and allowed selection from all possible crop choices. The net returns from this system were not different from net returns from WF (CT) and WF (NT). Cropping frequency can be effectively increased in dryland cropping systems by use of crop selection rules based on water use/yield production functions, measured available soil water, and expected precipitation.