Wildlife Damage Management, Internet Center for


Date of this Version



Published in Journal of Hydrology 405 (2011) 417–426. Doi:10.1016/j.jhydrol.2011.05.040


Recent flood events in the Prairie Pothole Region of North America have stimulated interest in modeling water storage capacities of wetlands and their surrounding catchments to facilitate flood mitigation efforts. Accurate estimates of basin storage capacities have been hampered by a lack of high-resolution elevation data. In this paper, we developed a 0.5 m bare-earth model from Light Detection And Ranging (LiDAR) data and, in combination with National Wetlands Inventory data, delineated wetland catchments and their spilling points within a 196 km2 study area. We then calculated the maximum water storage capacity of individual basins and modeled the connectivity among these basins. When compared to field survey results, catchment and spilling point delineations from the LiDAR bare-earth model captured subtle landscape features very well. Of the 11 modeled spilling points, 10 matched field survey spilling points. The comparison between observed and modeled maximum water storage had an R2 of 0.87 with mean absolute error of 5564 m3. Since maximum water storage capacity of basins does not translate into floodwater regulation capability, we further developed a Basin Floodwater Regulation Index. Based upon this index, the absolute and relative water that could be held by wetlands over a landscape could be modeled. This conceptual model of floodwater downstream contribution was demonstrated with water level data from 17 May 2008.