US Geological Survey


Date of this Version



Published in Quaternary Science Reviews 23 (2004) 1817–1833.


Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10–20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin˜ os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4–8 and 8–16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.