Agricultural Economics Department


Date of this Version



Transl. Anim. Sci. 2020.4:1091–1102 doi: 10.1093/tas/txaa020


© The Author(s) 2020.


This study’s objective was to estimate net returns and return risk for antimicrobial metaphylaxis options to manage bovine respiratory disease (BRD) in high health-risk feedlot cattle. The effectiveness of antimicrobials for metaphylaxis varies by cattle population. How differing antimicrobial effectiveness translates to net return profitability for heterogeneous cattle populations is less understood. Net returns and return risk were assessed using a net return simulation model adapted to allow for heterogeneity in high health-risk cattle placement characteristics and antimicrobial choice to control BRD. The net return model incorporated how antimicrobials modify BRD health and performance outcomes. Health and performance outcomes were calibrated from published literature and proprietary feedlot data. Proprietary data came from 10 Midwestern feedlots representing nearly 6 million animals and 50,000 cohorts. Twelve placement-by-metaphylaxis decision combinations were assessed: high health-risk steer placement demographics were 600 or 800 lb steers placed in Winter (Oct–Mar) or Summer (Apr–Sept) managed with one of three different health programs: “no metaphylaxis,” “Upper Tier” antimicrobial, or “Lower Tier” antimicrobial. Net return distributions were compared between “no metaphylaxis” and a specific antimicrobial tier within specific cattle populations. We found the expected incremental net return of administering an “Upper Tier” (“Lower Tier”) antimicrobial for metaphylaxis compared to “no metaphylaxis” for high health-risk steers was $122.55 per head ($65.72) for 600 lb and $148.65 per head ($79.65) for 800 lb winter placements. The incremental expected net return and risk mitigated by metaphylaxis varied by placement weight, season, and antimicrobial choice. The probability net returns would decline by at least $50 per head was signif-icantly reduced (from approximately 4% to 40%) when any antimicrobial was used on high health-risk steers. Both tiers of antimicrobials used for metaphylaxis increased expected net returns and decreased net return variability relative to no met-aphylaxis. Thus, feedlots were more certain and realize a greater profit on high health-risk pens of steers when metaphylaxis was used. This occurred because the reduction in cattle health and performance outcomes using any antimicrobial was sufficiently large to cover added initial and subsequent antimicrobial costs. Results aid in assessing metaphylaxis strategies in high health-risk cattle.