Agronomy and Horticulture, Department of
Document Type
Article
Date of this Version
2019
Citation
Geoderma 353 (2019) 25–34
Abstract
Various models and simplified equations are available to predict wind erosion potential. However, their performance can be often site-specific, depending on soil characteristics and agronomic practices, warranting sitespecific model validations. Thus, in this study, we 1) validated the wind erodible fraction (WEF) predictive equations by Fryrear et al. (1994) and López et al. (2007) and 2) estimated the total soil loss with the Singleevent Wind Erosion Evaluation Program (SWEEP) using 3-yr measured data from six experiments located across a precipitation gradient in the central Great Plains. Each site had three corn (Zea mays L.) residue removal treatments: control (no removal), grazed, and baled. The measured and predicted WEF were significantly correlated. While the Fryrear et al. (1994) equation performed better than the López et al. (2007) equation, it underestimated WEF with 59% uncertainty across site-years. To reduce this underestimation and uncertainty, we developed a new statistical equation (WEF%=84.3+2.64×% silt-0.30×% clay-7.43×% organic matter- 0.15×% residue cover; r2=0.56). The predictive ability of the new equation was, however, no better than that of the existing predictive equations, suggesting the need for further refinement of WEF equations for the region. Simulated total soil loss by wind using the SWEEP model indicated that corn residue baling may increase soil loss if residue cover drops below 20% in the study region. Overall, the existing WEF equations could under- or overestimate WEF based on site-specific residue management, warranting further model refinement and site-specific validation, whereas the SWEEP estimated soil loss corroborates the critical importance of maintaining sufficient residue cover (> 20%) to reduce wind erosion.
Included in
Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, Plant Biology Commons
Comments
© 2019 Published by Elsevier B.V.
This document is a U.S. government work and is not subject to copyright in the United States.