Agronomy and Horticulture, Department of

 

Document Type

Article

Date of this Version

2010

Citation

2009 The Authors 112 Journal compilation

Blackwell Publishing Ltd

doi: 10.1111/j.1467-7652.2009.00463.x

Comments

Plant Biotechnology Journal (2010) 8, pp. 112–125

Abstract

Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll-specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath-specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon-optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid-related studies of wild-type and mutant maize plants and provide material from which different plastid types may be isolated.

Share

COinS