Agronomy and Horticulture, Department of

 

Document Type

Article

Date of this Version

12-19-2021

Citation

Mourad, A.M.I.; Abou-Zeid, M.A.; Eltaher, S.; Baenziger, P.S.; Börner, A. Identification of Candidate Genes and Genomic Regions Associated with Adult Plant Resistance to Stripe Rust in Spring Wheat. Agronomy 2021, 11, 2585. https://doi.org/10.3390/ agronomy11122585

Comments

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

Abstract

Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in markerassisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions.

Share

COinS