Agronomy and Horticulture, Department of

 

Document Type

Article

Date of this Version

10-6-2022

Citation

aBIOTECH (2022) 3:178–196 https://doi.org/10.1007/s42994-022-00081-6

Comments

Used by permission

Abstract

Compared with most flowers where the showy part comprises specialized leaves (petals) directly subtending the reproductive structures, most Zingiberaceae species produce showy ‘‘flowers’’ through modifications of leaves (bracts) subtending the true flowers throughout an inflorescence. Curcuma alismatifolia, belonging to the Zingiberaceae family, a plant species originating from Southeast Asia, has become increasingly popular in the flower market worldwide because of its varied and esthetically pleasing bracts produced in different cultivars. Here, we present the chromosome-scale genome assembly of C. alismatifolia ‘‘Chiang Mai Pink’’ and explore the underlying mechanisms of bract pigmentation. Comparative genomic analysis revealed C. alismatifolia contains a residual signal of wholegenome duplication. Duplicated genes, including pigment-related genes, exhibit functional and structural differentiation resulting in diverse bract colors among C. alismatifolia cultivars. In addition, we identified the key genes that produce different colored bracts in C. alismatifolia, such as F3'5’H, DFR, ANS and several transcription factors for anthocyanin synthesis, as well as chlH and CAO in the chlorophyll synthesis pathway by conducting transcriptomic analysis, bulked segregant analysis using both DNA and RNA data, and population genomic analysis. This work provides data for understanding the mechanism of bract pigmentation and will accelerate breeding in developing novel cultivars with richly colored bracts in C. alismatifolia and related species. It is also important to understand the variation in the evolution of the Zingiberaceae family.

Share

COinS