Agronomy and Horticulture, Department of
Document Type
Article
Date of this Version
4-3-2023
Citation
Journal of Experimental Botany, Vol. 74, No. 14 pp. 4050–4062, 2023 https://doi.org/10.1093/jxb/erad129
Abstract
Leaf-level hyperspectral reflectance has become an effective tool for high-throughput phenotyping of plant leaf traits due to its rapid, low-cost, multi-sensing, and non-destructive nature. However, collecting samples for model calibration can still be expensive, and models show poor transferability among different datasets. This study had three specific objectives: first, to assemble a large library of leaf hyperspectral data (n=2460) from maize and sorghum; second, to evaluate two machine-learning approaches to estimate nine leaf properties (chlorophyll, thickness, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur); and third, to investigate the usefulness of this spectral library for predicting external datasets (n=445) including soybean and camelina using extra-weighted spiking. Internal cross-validation showed satisfactory performance of the spectral library to estimate all nine traits (mean R2=0.688), with partial least-squares regression outperforming deep neural network models. Models calibrated solely using the spectral library showed degraded performance on external datasets (mean R2=0.159 for camelina, 0.337 for soybean). Models improved significantly when a small portion of external samples (n=20) was added to the library via extra-weighted spiking (mean R2=0.574 for camelina, 0.536 for soybean). The leaf-level spectral library greatly benefits plant physiological and biochemical phenotyping, whilst extra-weight spiking improves model transferability and extends its utility.
Included in
Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, Plant Biology Commons
Comments
Open access.