Agronomy and Horticulture, Department of
Document Type
Article
Date of this Version
8-19-2024
Citation
Lepcha et al. Botanical Studies (2024) 65:26 https://doi.org/10.1186/s40529-024-00421-3
Abstract
Background The tropical legume Mucuna pruriens (L.) DC. can meet three agricultural needs: low-cost protein, highvalue medicines, and green manure or cover crops. But like other underutilized crops, it needs more modern breeding resources. Identifying marker-trait associations (MTAs) can facilitate marker-assisted breeding and crop improvement. Recent studies have demonstrated the feasibility of identifying MTAs using a small number of accessions (< 100). We have characterized a panel of 70 M. pruriens accessions across two consecutive years and performed association analysis for 16 phenotypic traits related to seed (seed length, seed width, seed thickness, seed yield per plant, hundred seed weight); pod (pod length, pod width, number of pods per cluster, number of pods per plant); inflorescence (inflorescence length, flower buds per inflorescence, flower length, pedicel length), and biochemical attributes (L-DOPA, total protein, total carbohydrate), using 66 genic-microsatellite markers following mixed linear model.
Results The results showed significant phenotypic (P < 0.05) and genetic diversity (Shannon’s information index, I = 0.62) in our germplasm collection. Many tested traits were highly heritable (broad-sense heritability ranging from 42.86 to 99.93%). A total of 15 MTAs was detected at an adjusted significance level of P < 5.55 × 10− 3 for nine traits (seed length, seed thickness, seed width, hundred seed weight, seed yield per plant, inflorescence length, flower buds per inflorescence, flower length, and petiole length), contributed by 10 SSR markers (MPU_19, MPU_42, MPU_54, MPU_57, MPU_58, MPU_83, MPU_89, MPU_108, MPU_111, and MPU_122.) with phenotypic variance explained (PVE) ranging from 14.7 to 31.1%. Out of the ten trait-associated markers, the BLAST analysis revealed putative functions of seven markers, except MPU_57, MPU_58, and MPU_83.
Conclusion Fifteen MTAs identified for important traits with phenotypic variance explained > 10% from mixed linear model offer a solid resource base for improving this crop. This is the first report on association mapping in M. pruriens and our results are expected to assist with marker-assisted breeding and identifying candidate genes in this promising legume.
Included in
Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, Plant Biology Commons
Comments
Open access.