Agronomy and Horticulture Department

 

Date of this Version

2011

Citation

Soil & Tillage Research 114 (2011), pp. 28–36; doi:10.1016/j.still.2011.03.005

Comments

This article is a U.S. government work, and is not subject to copyright in the United States.

Abstract

Emphasis and interest in carbon (C) and nitrogen (N) storage (sequestration) in soils has greatly increased in the last few years, especially C with its’ potential to help alleviate or offset some of the negative effects of the increase in greenhouse gases in the atmosphere. Several questions still exist with regard to what management practices optimize C storage in the soil profile. A long-term rainfed study conducted in eastern Nebraska provided the opportunity to determine both the effects of different tillage treatments and cropping systems on soil N and soil organic C (SOC) levels throughout the soil profile. The study included six primary tillage systems (chisel, disk, plow, no-till, ridge-till, and subtill) with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)]. Soil samples were collected to a depth of 150-cm in depth increments of 0–15-, 15–30-, 15–30-, 30–60-, 60– 90-, 90–120-, and 120–150-cm increments and composited by depth in the fall of 1999 after harvest and analyzed for total N and SOC. Significant differences in total N and SOC levels were obtained between tillage treatments and cropping systems in both surface depths of 0–15-, 15–30-cm, but also in the 30– 60-cm depth. Total N and SOC accumulations throughout the profile (both calculated by depth and for equivalent masses of soil) were significantly affected by both tillage treatment and cropping system, with those in no-till the greatest among tillage treatments and those in CC the greatest among cropping systems. Soil N and SOC levels were increased at deeper depths in the profile, especially in those tillage systems with the least amount of soil disturbance. Most significant was the fact that soil N and SOC was sequestered deeper in the profile, which would strongly suggest that N and C at these depths would be less likely to be lost if the soil was tilled.

Share

COinS