Department of Animal Science

 

Date of this Version

2018

Citation

(2018) 8:7930

Comments

© The Author(s) 2018

Open access

DOI:10.1038/s41598-018-26345-0

Abstract

Changes in abundance of mRNAs during oocyte growth and maturation and during pre-implantation embryo development have been documented using quantitative real-time RT-PCR (qPCR), microarray analyses, and whole genome sequencing. However, these techniques require amplification of mRNAs, normalization using housekeeping genes, can be biased for abundant transcripts, and/or require large numbers of oocytes and embryos which can be difficult to acquire from mammalian species. We optimized a single molecule RNA fluorescence in situ hybridization (RNA-FISH) protocol, which amplifies fluorescence signal to detect candidate transcripts, for use with individual oocytes and embryos. Quantification using the software Localize showed patterns of Gdf9 and Pou5f1 mRNA expression in oocytes and embryos that were consistent with previously published data. Interestingly, low levels of Nanog mRNA were also accurately and reproducibly measured in oocytes and one- and two-cell embryos suggesting that RNA-FISH could be used to detect and quantify low abundance transcripts. Unlike other techniques, RNA-FISH is also able to detect changes in the localization patterns of mRNAs which may be used to monitor post-transcriptional regulation of a transcript. Thus, RNA-FISH represents an important technique to investigate potential mechanisms associated with the synthesis and stability of candidate mRNAs in mammalian oocytes and embryos.

Share

COinS