Department of Animal Science



Warren M. Snelling

Date of this Version



J. Anim. Sci. 2019.97:1523–1533


This work is written by (a) US Government employee(s) and is in the public domain in the US.

doi: 10.1093/jas/skz045


Cow mature weight (MWT) has increased in the past 30 yr. Larger cows cost more to maintain, but their efficiency—and thus profitability— depends on the production environment. Incorporating MWT effectively into selection and mating decisions requires understanding of growth to maturity. The objective of this study was to describe growth to maturity in crossbred beef cattle using Brody, spline, and quadratic functions. Parameter estimates utilized data on crossbred cows from cycle VII and continuous sampling phases of the Germplasm Evaluation Program at the U.S. Meat Animal Research Center. The MWT were estimated at 6 yr from the fitted parameters obtained from the Brody (BMWT), spline (SMWT), and quadratic (QMWT) functions. These were defined as BMWT, SMWT, and QMWT for the Brody, spline, and quadratic functions, respectively. Key parameters from the Brody function were BMWT and maturing constant. The spline was fitted as piecewise linear where the two linear functions joined at a knot. Key parameters were knot position and SMWT. For the quadratic model, the main parameter considered was QMWT. Data were scaled for fitting such that 180 d was the y-intercept with the average weight at 180 d (214.3 kg) subtracted from all weights. Weights were re-expressed by adding 214.3 kg after analysis. Once data were edited, with outliers removed, there were parameter estimates for 5,156, 5,041, and 4,905 cows for the Brody, spline, and quadratic functions, respectively. The average maturing constant (SD) was 0.0023 d−1 (0.0008 d−1). The mean MWT estimates (SD) from the Brody, spline, and quadratic functions were 650.0 kg (64.0 kg), 707.3 kg (79.8 kg), and 597.8 kg (116.7 kg), respectively. The spline function had the highest average R2 value when fit to individual cows’ data. However, the Brody function produced more consistent MWT estimates regardless of the timeframe of data available and produced the fewest extreme MWT. For the spline and quadratic functions, weights through 4 and 5 yr of age, respectively, were needed before consistent estimates of MWT were obtained. Of the three functions fitted, the Brody was best suited for estimating MWT at a later age in crossbred beef cattle.