Animal Science Department


Date of this Version



Transl. Anim. Sci. 2019.3:1673–1677


© The Author(s) 2019.

Open access

doi: 10.1093/tas/txz055


Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring.