Animal Science Department


Date of this Version



Journal of Animal Science, 2023, 101, 1–10


Open access.


Gastrointestinal nematodes (GIN) negatively affect the performance and well-being of sheep. Due to anthelmintic resistance, GIN are difficult to control leading producers to choose breeds that can exhibit resistance to parasitism. An example is Katahdin sheep. Katahdins are raised in various climates and management systems in the United States. These environmental factors can be combined to form eco-management groupings or clusters. We hypothesized that GIN challenge varies predictably based on the characteristics of these environmental clusters. Forty Katahdin producers from across the United States were surveyed for management information, with body weights (BW), fecal egg counts (FEC), and FAMACHA scores (FAM) available from 17 of the 40 flocks. The performance data included 3,426 lambs evaluated around 90 d of age. Management and climate data were combined into clusters using multiple correspondence and principal component (PC) analysis. Performance data were aligned with their corresponding cluster. Depending on the trait, eco-management cluster, birth-rearing type, sex, and, as a covariate, dam age, were fitted as systematic effects with ANOVA. Clusters also were formed based on climate or management data alone. When compared with fitting the eco-management clusters, they defined less variation in each of the traits based on Akaike and Bayesian information criterion, and adjusted r2 values. To further examine variation defined by eco-management clusters, residuals from an ANOVA model excluding eco-management cluster were retained, and their correlation with PC loadings calculated. All PC loadings were included as potential independent variables and tested for significance using backward stepwise regression. The PC loadings with a correlation |≥0.49| explained significant variation in each trait and were included in the final models chosen; adjusted r2 values for BW, FEC, and FAM were 0.90, 0.81, and 0.97, respectively. When analyzing GIN challenge, eco-management clusters corresponding with hotter temperatures and greater rainfall, and with pasture-born lambs, suffered greater parasitism. Conversely, the eco-management clusters with lambs turned out to pasture at older ages benefited from reduced parasitism. Through the formation of eco-management clusters, an environmental variable can be defined to study interactions of genotypes to their environment, providing a potentially useful tool for identifying parasite-resistant sheep.