Biochemistry, Department of

 

Date of this Version

2015

Citation

Published in Algal Research 11 (2015), pp 74–84.

Comments

Copyright © 2015 Elsevier B.V. Used by permission.

Abstract

The use of microalgae as a biofuel feedstock is highly desired, but current methods to induce lipid accumulation cause severe stress responses that limit biomass and, thus oil yield. To address these issues, a high throughput screening (HTS) method was devised to identify chemical inducers of growth and lipid accumulation. Optimization was performed to determine the most effective cell density, DMSO and Nile Red (NR) concentrations to monitor growth and lipid accumulation. The method was tested using 1717 compounds from National Cancer Institute (NCI) Diversity Set III and Natural Products Set II in Chlamydomonas reinhardtii. Cells were inoculated at low density and 10 μM of the test compound was added. After 72 h, cell density was measured at OD550 and lipid accumulation assessed using NR fluorescence. Primary screening identified 8 compounds with a hit rate of 0.47% and a robust Z′ discrimination factor (0.68 ± 0.1). Of these, Brefeldin A (BFA) was the most successful at inducing lipid accumulation and was used to evaluate secondary screens including measuring levels of fatty acids, photosynthetic pigments, proteins and carbohydrates. The effectiveness of BFA was confirmed in Chlorella sorokiniana UTEX 1230. This study demonstrates the power of chemical genomics approaches in biofuel research.

Share

COinS