Papers in the Biological Sciences
Document Type
Article
Date of this Version
2014
Citation
Am. J. Phys. 82 (5), May 2014
Abstract
As the frontiers of biology become increasingly interdisciplinary, the physics education community has engaged in ongoing efforts to make physics classes more relevant to life science majors. These efforts are complicated by the many apparent differences between these fields, including the types of systems that each studies, the behavior of those systems, the kinds of measurements that each makes, and the role of mathematics in each field. Nonetheless, physics and biology are both sciences that rely on observations and measurements to construct models of the natural world. In this article, we propose that efforts to bridge the teaching of these two disciplines must emphasize shared scientific practices, particularly scientific modeling. We define modeling using language common to both disciplines and highlight how an understanding of the modeling process can help reconcile apparent differences between the teaching of physics and biology. We elaborate on how models can be used for explanatory, predictive, and functional purposes and present common models from each discipline demonstrating key modeling principles. By framing interdisciplinary teaching in the context of modeling, we aim to bridge physics and biology teaching and to equip students with modeling competencies applicable in any scientific discipline.
Comments
Copyright 2014 American Association of Physics Teachers
http://dx.doi.org/10.1119/1.4870502