Papers in the Biological Sciences

 

ORCID IDs

Farhan Mahmood Shah orcid.org/0000-0002-6123-1860

Ali Güncan orcid.org/0000-0003-1765-648X

John Paul DeLong orcid.org/0000-0003-0558-8213

Document Type

Article

Date of this Version

2022

Citation

Frontiers in Plant Science, July 2022 Volume 13 Article 849574

doi: 10.3389/fpls.2022.849574

Comments

Copyright © 2022 Islam, Shah, Güncan, DeLong and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).

Abstract

Functional responses are central to predator–prey dynamics and describe how predation varies with prey abundance. Functional responses often are measured without regard to prey size (i.e., body mass) or the temperature dependence of feeding rates. However, variation in prey size within populations is ubiquitous, and predation rates are often both size and temperature-dependent. Here, we assessed functional responses of larvae and adult Harmonia axyridis on the 1st, 2nd, and 3rd instars of the prey Spodoptera litura across a range of temperatures (i.e., 15, 20, 25, 30, and 35◦C). The type and parameters of the functional responses were determined using logistic regression and fitted to the Roger’s random predator equation. The magnitude of predation varied with the predator and prey stage, but prey predation increased with warming and predator age. Predation by the female and 4th instar of H. axyridis on the 1st instar of prey was greater, followed by the 2nd and 3rd instar of prey S. litura. No predation occurred on the larger prey for the 1st, 2nd, and 3rd instars of H. axyridis. The larvae and adult H. axyridis produced a type II (hyperbolic) functional response curve across all temperatures and the three prey types they consumed. Space clearance rates, handling time, and maximum predation rates of H. axyridis changed with temperature and prey size, increasing with temperature and decreasing with prey size, suggesting more predation will occur on younger prey. This study indicates an interactive role of temperature and prey/predator size in shaping functional responses, which might complicate the planning of effective biocontrol strategies against this serious pest.

Included in

Biology Commons

Share

COinS