Papers in the Biological Sciences

 

Date of this Version

5-2009

Comments

Published in Journal of Insect Physiology 55:5 (May 2009), pp. 450–458; Special Issue on Insect Clocks; doi: 10.1016/j.jinsphys.2008.11.012 Copyright © 2008 Elsevier Ltd. Used by permission. http://www.elsevier.com/locate/jinsphys

Abstract

Previous studies demonstrated a high-amplitude, diel cycle for the hemolymph JH titer in the wing-polymorphic cricket, Gryllus firmus. The JH titer rose and fell in the flight-capable morph (long-winged, LW(f)) above and below the relatively temporally invariant JH titer in the flightless (short-winged, SW) morph. The morph-specific JH titer cycle appeared to be primarily driven by a morph-specific diel cycle in the rate of JH biosynthesis. In the present study, cycles of the JH titer and rate of JH biosynthesis in the LW(f) morph persisted in the laboratory under constant darkness with an approximate 24 h periodicity. The JH titer cycle also shifted in concert with a shift in the onset of the scotophase, was temperature compensated in constant darkness, and became arrhythmic under constant light. These results provide strong support for the circadian basis of the morph-specific diel rhythm of the JH titer and JH biosynthetic rate. Persistence of the JH titer cycle under constant darkness in multiple LW-selected and SW-selected stocks also provides support for the genetic basis of the morph-associated circadian rhythm. The morph-specific JH titer cycle was observed in these stocks raised in the field, in both males and females, in each of 3 years studied. The onset of the cycle in the LW(f) morph, a few hours before sunset, correlated well with the onset of the cycle, a few hours before lights-off, in the laboratory. The morph-specific JH titer cycle is a general feature of G. firmus, under a variety of environmental conditions, and is not an artifact of specific laboratory conditions or specific genetic stocks. It is a powerful experimental model to investigate the mechanisms underlying endocrine circadian rhythms, their evolution, and their impact on life history evolution.

Included in

Microbiology Commons

Share

COinS