Biological Systems Engineering, Department of

 

First Advisor

Yufeng Ge

Date of this Version

12-2018

Document Type

Article

Comments

A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Master of Science, Major: Agricultural and Biological Systems Engineering, Under the Supervision of Professor Yufeng Ge. Lincoln, Nebraska: December, 2018

Copyright (c) 2018 Suresh Thapa

Abstract

Recently, imaged-based high-throughput phenotyping methods have gained popularity in plant phenotyping. Imaging projects the 3D space into a 2D grid causing the loss of depth information and thus causes the retrieval of plant morphological traits challenging. In this study, LiDAR was used along with a turntable to generate a 360-degree point cloud of single plants. A LABVIEW program was developed to control and synchronize both the devices. A data processing pipeline was built to recover the digital surface models of the plants. The system was tested with maize and sorghum plants to derive the morphological properties including leaf area, leaf angle and leaf angular distribution. The results showed a high correlation between the manual measurement and the LiDAR measurements of the leaf area (R2>0.91). Also, Structure from Motion (SFM) was used to generate 3D spectral point clouds of single plants at different narrow spectral bands using 2D images acquired by moving the camera completely around the plants. Seven narrow band (band width of 10 nm) optical filters, with center wavelengths at 530 nm, 570 nm, 660 nm, 680 nm, 720 nm, 770 nm and 970 nm were used to obtain the images for generating a spectral point cloud. The possibility of deriving the biochemical properties of the plants: nitrogen, phosphorous, potassium and moisture content using the multispectral information from the 3D point cloud was tested through statistical modeling techniques. The results were optimistic and thus indicated the possibility of generating a 3D spectral point cloud for deriving both the morphological and biochemical properties of the plants in the future.

Advisor: Yufeng Ge

Share

COinS