Biological Systems Engineering, Department of
Document Type
Article
Date of this Version
2006
Abstract
Two different deacetylated chitosans were dissolved in formic, acetic, lactic, or propionic acid to prepare chitosan films. The pH values of the film-forming solutions were adjusted to 3, 4, and 5. Water vapor permeability (WVP), tensile strength (TS), elongation (E), and total soluble matter (TSM) were significantly (P < 0.05) affected by acid type, pH, and degree of deacetylation (DA). Low DA (LDA) chitosan films had lower WVP and TSM, higher TS compared with high DA (HDA) chitosan films. The E values were not affected by DA. As pH increased, WVP and TSM of chitosan films tended to increase while TS decreased significantly (P < 0.05). Chitosan films with acetic and propionic acid solvents had low WVP and TSM and high TS, while films with lactic acid solvent had high E and TSM and the lowest TS. Fourier-transform infrared showed peak shifting in the spectra with different solvents and at different pH values. Chitosan films with lactic acid solvent showed a peak shift to a lower frequency range. The NH3+ band was absent in the pH 5.0 chitosan film spectra.
Comments
Published in Journal of Food Science E: Food Engineering and Physical Properties 71:3 (2006), pp. 119–124; Copyright © 2006 Institute of Food Technologists; published by Wiley-Blackwell. Used by permission.