Biological Systems Engineering, Department of
Document Type
Article
Date of this Version
2021
Citation
Meier,J.;Stapleton,J.; Hofferber, E.; Haworth, A.; Kachman, S.; Iverson, N.M. Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors. Nanomaterials 2021, 11, 243. https://doi.org/10.3390/nano11 010243
Abstract
Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO’s short half-life, detection and quan- tification is difficult. The inability to quantify NO has hindered researchers’ understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, becomes selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT’s fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.
Included in
Bioresource and Agricultural Engineering Commons, Environmental Engineering Commons, Other Civil and Environmental Engineering Commons
Comments
2021 by the authors.