Biotechnology, Center for

 

Document Type

Article

Date of this Version

2015

Citation

J Biomed Nanotechnol. 2015 March ; 11(3): 416–427.

Comments

Copyright Date et al.

Abstract

The objective of this investigation was to develop and evaluate a nano-microbicide containing a combination of cellulose acetate phthalate (HIV-1 entry inhibitor) and efavirenz (anti-HIV agent) for HIV prophylaxis. Cellulose acetate phthalate-efavirenz combination nanoparticles (CAP-EFV-NPs) were fabricated by the nanoprecipitation method and were characterized for particle size, zeta potential and encapsulation efficiency of efavirenz. CAP-EFV-NPs were incorporated into a thermosensitive gel (CAP-EFV-NP-Gel). CAP-EFV-NPs, CAP-EFV-NP-Gel and efavirenz solution were evaluated for cytotoxicity to HeLa cells and for in vitro short-term (1-day) and long-term (3-day) prophylaxis against HIV-1 infection in TZM-bl cells. CAP-EFV-NPs had size < 100 nm, negative surface charge and encapsulation efficiency of efavirenz was > 98%. CAP-EFV-NPs and CAP-EFV-NP-Gel were significantly less toxic (P < 0 01) to HeLa cells as compared to efavirenz solution. CAP-EFV-NPs showed significantly higher prophylactic activity (P < 0 01) against HIV-1 infection to TZM-bl cells as compared to efavirenz solution and blank CAP nanoparticles. CAP-EFV-NP-Gel can be a promising nano-microbicide for long-term HIV prophylaxis.

Share

COinS