Chemical and Biomolecular Engineering, Department of

 

Unraveling Depth-Specific Ionic Conduction and Stiffness Behavior across Ionomer Thin Films and Bulk Membranes

Date of this Version

7-20-2021

Document Type

Article

Citation

ACS Macro Lett. 2021, 10, 791−798

Comments

© 2021 American Chemical Society

Abstract

Interfacial behavior of submicron thick polymer films critically controls the performance of electrochemical devices. We developed a robust, everyday-accessible, fluorescence confocal laser scanning microscopy (CLSM)-based strategy that can probe the distribution of mobility, ion conduction, and other properties across ionomer samples. When fluorescent photoacid probe 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) was incorporated into <1 >μm thick Nafion films on substrates, the depth-profile images showed thickness- and interface-dependent proton conduction behavior. In these films, proton conduction was weak over a region next to substrate interface, then gradually increased until air interface at 88% RH. Conversely, consistently high proton conduction with no interface dependence was observed across 35-50 μm thick bulk, free-standing Nafion membranes. A hump-like mobility/stiffness distribution was observed across Nafion films containing mobility-sensitive probe (9-(2-carboxy-2-cyanovinyl)julolidine) (CCVJ). The proton conduction and mobility distribution were rationalized as a combinatorial effect of interfacial interaction, ionomer chain orientation, chain density, and ionic domain characteristics.

Share

COinS