Chemical and Biomolecular Engineering, Department of

 

Date of this Version

2016

Document Type

Article

Citation

Advances in Hematology Volume 2016, Article ID 7678901, 9 pages http://dx.doi.org/10.1155/2016/7678901

Comments

Copyright Ā© 2016 Dougald M. Monroe et al. This is an open access article distributed under the Creative Commons Attribution License

Abstract

The goal of these studies was to extensively characterize the first recombinant FIX therapeutic corresponding to the threonine-148 (Thr-148) polymorph, IXINITY (trenonacog alfa [coagulation factor IX (recombinant)]). Gel electrophoresis, circular dichroism, and gel filtration were used to determine purity and confirm structure. Chromatographic and mass spectrometry techniques were used to identify and quantify posttranslationalmodifications. Activity was assessed as the ability to activate factor X (FX) both with and without factor VIIIa (FVIIIa) and in a standard clotting assay. All results were consistent across multiple lots. Trenonacog alfa migrated as a single band onCoomassie-stained gels; activity assayswere normal and showed97% š¯›¾-carboxylation and underwent the appropriate structural change upon binding calcium ions. Trenonacog alfa was activated normally with factor XIa (FXIa); once activated it bound to FVIIIa and FXa. When activated to FIXa, it was inhibited efficiently by antithrombin. Glycosylation patterns were similar to plasma-derived FIX with sialic acid content consistent with the literature reports of good pharmacokinetic performance. These studies have shown that trenonacog alfa is a highly pure product with a primary sequence and posttranslational modifications consistent with the common Thr-148 polymorphism of plasma-derived FIX.

Share

COinS