Department of Chemistry
Document Type
Article
Date of this Version
2018
Citation
Sci. Adv. 2018;4: eaat0491
Abstract
Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a large class of materials that are finding numerous applications ranging from energy storage and electromagnetic interference shielding to water purification and antibacterial coatings. Yet, despite the fact thatmore than 20 different MXenes have been synthesized, the mechanical properties of a MXene monolayer have not been experimentally studied. We measured the elastic properties of monolayers and bilayers of the most important MXene material to date, Ti3C2Tx (Tx stands for surface termination).We developed amethod for preparingwell-strainedmembranes of Ti3C2Tx monolayers and bilayers, and performed their nanoindentation with the tip of an atomic force microscope to record the force-displacement curves. The effective Young’s modulus of a single layer of Ti3C2Tx was found to be 0.33 ± 0.03 TPa, which is the highest among the mean values reported in nanoindentation experiments for other solution-processed 2D materials, including graphene oxide. This work opens a pathway for investigating the mechanical properties of monolayers and bilayers of other MXenes and extends the already broad range of MXenes’ applications to structural composites, protective coatings, nanoresonators, and membranes that require materials with exceptional mechanical properties.
Included in
Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, Other Chemistry Commons
Comments
Copyright © 2018 The Authors