Department of Chemistry
Document Type
Article
Date of this Version
1980
Citation
Prepared for Ames Research Center under Grant NGR 28-004-025
National Aeronautics and Space Administration Scientific and Technical Information Office 1980
Abstract
Commercially pure titanium rods were machined into hollow cylinders and gas-phase permeation and diffusion measurements obtained with a quadrupole residual gas analyzer at temperatures between 400-800°C and pressures between 0.533 and 266.6 Nrn-2. Pressure dependence measurements established that phase boundary reactions as well as lattice diffusion control the transport process. Lag-time data yield excellent agreement with the diffusivity data of Wasilewski and Kehl and Papazoglou and Hepworth for the case where phase boundary reactions are taken into account. The best value of the diffusivity is D = 2.1 x 10-2 exp (-50,40O/RT). Analysis of lag-time data reveals that unsteady state transport tends toward phase boundary reaction control for thin membranes (low b/a ratio) and diffusion control for thick membranes (large b/a ratio). Permeation activation energy, Qp, is 74,300 Joules mole-1. Due to first power pressure dependency, P0 values are a complex function of pressure and geometry and are presented in tabular form. Oxide and nitride films on the interior membrane surface retard permeation whereas the same films on the exterior surface enhance the permeation somewhat. This is explained in terms of a discontinuous TiH2 layer.
Included in
Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, Other Chemistry Commons
Comments
U.S. government work