Department of Chemistry

 

Date of this Version

10-14-2022

Citation

ACS Appl. Eng. Mater. 2023, 1, 334−340. https://doi.org/10.1021/acsaenm.2c00079

Comments

Used by permission.

Abstract

Ethylene is an important chemical feedstock for production of polymers and high-value organic chemicals, and yet its conventional purification process is plagued with high consumption of energy. Metal−organic frameworks (MOFs) provide a suitable adsorption platform for selective ethane/ ethylene separation thanks to their structural diversity, tunable pore characteristics, designable pore sizes, and high pore volumes. Although there are empirical design rules like avoiding open metal sites and creating nonpolar pore surfaces for development of adsorptive MOFs, it is still challenging to design robust MOFs that can realize direct ethane-selective separation. Herein, we systematically designed and synthesized three Zr-MOFs based on the assembly of angular ligands and 12-connected Zr6 clusters that feature the pcu network structure. By changing the size and flexibility of the substituent on the angular ligand, we were able to prevent interpenetration and identified NPF-802, which exhibits good C2H6/C2H4 separation performance that is attributed to the bulky and inert tert-butyl groups of its carbazole ligand. This work provides insights for design of ligands of MOFs with suitable pore environments to address important and challenging gas separations.

Share

COinS