"Protein synthesis in rabbit reticulocytes: Mechanism of protein synthe" by A. Das, O. Ralston et al.

Department of Chemistry

 

Document Type

Article

Date of this Version

1979

Comments

Published in Proc. Natl. Acad. Sci. USA Vol. 76, No. 10, pp. 5076-5079, October 1979. Used by Permission

Abstract

Partially purified Met-tRNAf binding factor, eIF-2, was phosphorylated by using heme-regulated inhibitor (HRI). Phosphorylated eIF-2 was freed from HRI by phosphocellulose column chromatography. Analysis by isoelectric focusing showed 100% phosphorylation of the 38,000-dalton subunit of eIF-2. Both eIF-2 and eIF-2(P) formed ternary complexes with Met-tRNAf and GTP with almost the same efficiency, and in both cases the ternary complex formation was drastically inhibited by prior addition of Mg2+. However, whereas the ternary complexes formed with eIF-2 could be stimulated by Co-eIF-2C at 1 mM Mg2+ and dissociated by Co-eIF-2B at 5 mM Mg2+, the ternary complexes formed with eIF-2(P) were unresponsive to both Co-eIF-2B and Co-eIF-2C. Also under conditions of eIF-2 phosphorylation, HRI drastically inhibited AUG-dependent Met-tRNAf binding to 40S ribosomes. However, HRI (in the presence of ATP) had no effect on the joining of preformed Met-tRNAf•40S•AUG complex to the 60S ribosomal subunit to form Met-tRNAf•80S•AUG complex. These studies suggest that HRI inhibits protein synthesis initiation by phosphorylation of the 38,000-dalton subunit of eIF-2. HRIphosphorylated eIF-2 does not interact with at least two other protein factors, Co-eIF-2B and Co-eIF-2C, and is thus inactive in protein synthesis initiation.

Included in

Chemistry Commons

Share

COinS