Chemistry, Department of

 

Department of Chemistry: Dissertations, Theses, and Student Research

First Advisor

Cliff I. Stains

Date of this Version

3-2016

Document Type

Thesis

Citation

A thesis presented to the faculty of the Graduate College at the University of Nebraska in partial fulfillment of requirements for the degree of Master of Science

Major: Chemistry

Under the supervision of Professor Cliff I. Stains

Lincoln, Nebraska, March 2016

Comments

Copyright 2016, Maia Kelly. Used by permission

Abstract

Hepatocellular carcinoma (HCC) is an extremely aggressive form of liver cancer with a low survival rate due to high recurrence. Increases in Rho-associated Protein Kinase (ROCK) activity are correlated with a more aggressive, metastatic phenotype associated with advanced HCC. Inhibitors for ROCK have shown potential for the reduction of this metastatic phenotype of HCC. We outline the design and optimization of a direct activity sensor for ROCK that utilizes a phosphorylation-sensitive sulfonamido-oxine fluorophore, termed Sox, and is capable of reporting on the inhibition of ROCK. This CSox-based activity probe utilizes chelation-enhanced fluorescence (ex. = 360 nm and em. = 485 nm) between the proximal phosphorylated residue, Mg2+ and the Sox fluorophore. This allows for the direct and continuous monitoring of phosphorylation of the peptide-based probe over time. The sensitivity of the optimal CSox-based probe, ROCK-S1, was detected to be 10 pM of recombinant enzyme. Using this probe we demonstrate the ability to directly and rapidly assess a pilot small molecule library for inhibitors of ROCK2, using a robotics platform. In a step towards applying our probe in complex biological systems, we identify the optimal conditions for monitoring ROCK2 while inhibiting off-target enzymes (PKCα, PKA, and PAK). Our work provides a sensitive assay platform for ROCK activity that is compatible to HTS and could potentially be used to interrogate ROCK activity in heterogeneous biological samples.

Advisor: Cliff I. Stains

Included in

Chemistry Commons

Share

COinS