Published Research - Department of Chemistry


Date of this Version



Anal Bioanal Chem.2012 April ; 403(2): 563–571. doi:10.1007/s00216-012-5816-y. This archive contains the PubMed Central pdf version


Copyright (c) 2012 Springer Verlag. Used by permission


Columns containing immobilized low density lipoprotein (LDL) were prepared for the analysis of drug interactions with this agent by high-performance affinity chromatography (HPAC). R/S Propranolol was used as a model drug for this study. The LDL columns gave reproducible binding to propranolol over 60 h of continuous use in the presence of pH 7.4, 0.067 M potassium phosphate buffer. Experiments conducted with this type of column through frontal analysis indicated that two types of interactions were occurring between R-propranolol and LDL, while only a single type of interaction was observed between S-propranolol and LDL. The first type of interaction, which was seen for both enantiomers, involved non-saturable binding; this interaction had an overall affinity (nKa) of 1.9 (± 0.1) × 105 M-1 for R-propranolol and 2.7 (± 0.2) × 105 M-1 for S-propranolol at 37 °C. The second type of interaction was observed only for R-propranolol and involved saturable binding that had an association equilibrium constant (Ka) of 5.2 (± 2.3) × 105 M-1 at 37 °C. Similar differences in binding behavior were found for the two enantiomers at 20 °C and 27 °C. This is the first known example of stereoselective binding of drugs by LDL or other lipoproteins. This work also illustrates the ability of HPAC to be used as a tool for characterizing mixed-mode interactions that involve LDL and related binding agents.