Civil and Environmental Engineering

 

ORCID IDs

Bruce I. Dvorak

Document Type

Article

Date of this Version

2012

Citation

Published in Water Research 46 (2012), pp. 2828-2836; doi: 10.1016/j.watres.2012.03.033

Comments

Published by Elsevier Ltd. Used by permission.

Abstract

Estrogenic compounds in drinking water sources pose potential threats to human health. Treatment technologies are needed to effectively remove these compounds for the production of safe drinking water. In this study, GAC adsorption was first tested for its ability to remove a model estrogenic compound, 17β-estradiol (E2). Although GAC showed a relatively high adsorption capacity for E2 in isotherm experiments, it appeared to have a long mass transfer zone in a GAC column reactor, causing an early leakage of E2 in the effluent. With an influent E2 concentration of 20 μg/L, the GAC reactor was able to bring down effluent E2 to ∼200 ng/L. To further enhance E2 removal, the GAC reactor was converted to a biologically active carbon (BAC) reactor by promoting biofilm growth in the reactor. Under optimal operating conditions, the BAC reactor had an effluent E2 concentration of ∼50 ng/L. With the empty bed contact times tested, the reactor exhibited more robust E2 removal performance under the BAC operation than under the GAC operation. It is noted that estrone (E1), an E2 biodegradation intermediate, was frequently detected in reactor effluent during the BAC operation. Results from this study suggested that BAC could be an effective drinking water treatment process for E2 removal and in the meantime E1 accumulation needs to be addressed.

Share

COinS