Materials and Nanoscience, Nebraska Center for (NCMN)
Date of this Version
2022
Citation
Published (2022) in Journal of Magnetism and Magnetic Materials, 563, art. no. 170035
DOI: 10.1016/j.jmmm.2022.170035
Abstract
We have prepared the Heusler alloy CoFeV0.5Mn0.5Si in bulk form via arc melting. CoFeV0.5Mn0.5Si is ferromagnetic with a Curie temperature of 657 K. The longitudinal resistivity exhibits a minimum at 150 K, which is attributable to competition between quantum interference corrections at low temperatures and inelastic scattering at higher temperatures. The magnetoresistance (MR) is positive and nearly linear at low temperatures and becomes negative at temperatures close to room temperature. The positive MR in the quantum correction regime is evidence of the presence of the enhanced electron interaction as a contributor to the longitudinal resistivity. Hall effect measurements indicate a carrier concentration of the order of 1022 cm-3, which is nearly 3 orders of magnitude higher than that found in the “parent” material CoFeMnSi. The higher carrier concentration is consistent with the predicted half metallicity of CoFeV0.5Mn0.5Si. The anomalous Hall conductivity of CoFeV0.5Mn0.5Si is temperature independent for temperatures below the resistivity minimum, which is strong evidence of the absence of quantum interference effects on the anomalous Hall conductivity in a 3D ferromagnet.
Included in
Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, Engineering Physics Commons, Other Physics Commons
Comments
Copyright © Elsevier. Used by permission.