Materials and Nanoscience, Nebraska Center for (NCMN)
Date of this Version
8-2-2001
Abstract
Chemical bonding and electronic structure of MgB2, a boron-based newly discovered superconductor, is studied using self-consistent band-structure techniques. Analysis of the transformation of the band structure for the hypothetical series of graphite–primitive graphite–primitive graphitelike boron–intercalated boron, shows that the band structure of MgB2 is graphitelike, with π bands falling deeper than in ordinary graphite. These bands possess a typically delocalized and metallic, as opposed to covalent, character. The in-plane σ bands retain their two-dimensional (2D) covalent character, but exhibit a metallic hole-type conductivity. The coexistence of 2D covalent in-plane and three-dimensional (3D) metallic-type interlayer conducting bands is a peculiar feature of MgB2. We analyze the 2D and 3D features of the band structure of MgB2 and related compounds, and their contributions to conductivity.
Comments
Published in PHYSICAL REVIEW B, VOLUME 64, 092503. © 2001 American Physical Society. Used by permission.