"Modeling Changes in Measured Conductance of Thin Boron Carbide Semicon" by George G. Peterson, Yongqiang Wang et al.

Computer Science and Engineering, Department of

 

Computer Science, Computer Engineering, and Bioinformatics: Faculty Publications

Document Type

Article

Date of this Version

2016

Citation

Published in IEEE Transactions on Nuclear Science (early access, November 9, 2016)

Comments

Copyright 2016 The Authors.

Abstract

Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B10C2+x:Hy) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (��) that incorporates changes of the electrical properties for both the a-B10C2+x:Hy film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (��). Samples were then irradiated with 200 keV He+ ions, and the conductance model was matched to the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Ω to 2705 Ω. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Ω (0.2 dpa equivalent), 77440 Ω (0.3 dpa equivalent), and 190000 Ω (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B10C2+x:Hy and irradiated silicon. Additionally, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range.

Share

COinS