Computer Science and Engineering, Department of

 

ORCID IDs

0000-0003-0344-7134

0000-0002-1071-8468

0000-0002-0697-2949

0000-0002-6628-6748

Document Type

Article

Date of this Version

2019

Citation

Computational and Mathematical Methods in Medicine Volume 2019, Article ID 7496591, 12 pages

Comments

Copyright © 2019 Chunxiao Liao et al.

Open access

https://doi.org/10.1155/2019/7496591

Abstract

Background and Objective: +e emergence of the nonnutritive suck (NNS) pattern in preterm infants reflects the integrity of the brain and is used by clinicians in the neonatal intensive care unit (NICU) to assess feeding readiness and oromotor development. A critical need exists for an integrated software platform that provides NNS signal preprocessing, adaptive waveform discrimination, feature detection, and batch processing of big data sets across multiple NICU sites. +us, the goal was to develop and describe a crossplatform graphical user interface (GUI) and terminal application known as NeoNNS for single and batch file time series and frequency-domain analyses of NNS compression pressure waveforms using analysis parameters derived from previous research on NNS dynamics. Methods. NeoNNS was implemented with Python and the Tkinter GUI package. +e NNS signal-processing pipeline included a low-pass filter, asymmetric regression baseline correction, NNS peak detection, and NNS burst classification. Data visualizations and parametric analyses included time- and frequency-domain view, NNS spatiotemporal index view, and feature cluster analysis to model oral feeding readiness. Results. 568 suck assessment files sampled from 30 extremely preterm infants were processed in the batch mode (<50 minutes) to generate time- and frequency-domain analyses of infant NNS pressure waveform data. NNS cycle discrimination and NNS burst classification yield quantification of NNS waveform features as a function of postmenstrual age. Hierarchical cluster analysis (based on the Tsfresh python package and NeoNNS) revealed the capability to label NNS records for feeding readiness. Conclusions. NeoNNS provides a versatile software platform to rapidly quantify the dynamics of NNS development in time and frequency domains at cribside over repeated sessions for an individual baby or among large numbers of preterm infants at multiple hospital sites to support big data analytics. +e hierarchical cluster feature analysis facilitates modeling of feeding readiness based on quantitative features of the NNS compression pressure waveform.

Share

COinS