Computer Science and Engineering, Department of


Document Type


Date of this Version



DOI 10.1109/JXCDC.2022.3210509


Used by permission.


This work paves the way to realize a processing-in-pixel accelerator based on a multi-level HfOx RRAM as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing at edge devices. The proposed design intrinsically implements and supports a coarse-grained convolution operation in low-bit-width neural networks leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. Our evaluations show that such a design can remarkably reduce the power consumption of data conversion and transmission to an off-chip processor maintaining accuracy compared with the recent in-sensor computing designs. Our proposed design, namely MR-PIPA, achieves a frame rate of 1000 and efficiency of ~1.89 TOp/s/W, while it substantially reduces data conversion and transmission energy by ~84% compared to a baseline at the cost of minor accuracy degradation.