Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Design and Analysis of Binary Driven Coherent M-Ary QAM Transmitter for Next Generation Optical Networks

Naji Albakay, University of Nebraska - Lincoln

Abstract

This work presents a design for a binary driven optical square M-ary quadrature amplitude modulation (QAM) transmitter for high speed optical networks. The transmitter applies tandem quadrature phase shift keying (QPSK) modulators to eliminate the need for linear broadband amplifiers and high-resolution digital to analog converters (DACs), which are both required by conventional transmitters. The transmitter design could be scaled to any order of square M-ary QAM by simply adding more QPSK modulators in tandem. It also provides a Gray coded symbol constellation, insuring the lowest bit error rate possible during symbol recovery. We also provide the design for the coupling ratios of the optical couplers that take into account the insertion loss of the optical components, in order to generate a proper 16-QAM and 64-QAM symbol constellation with equally-spaced symbols. Additionally, we analyze the impact of coupling ratio errors as well as phase errors on the bit error rate (BER) performance and constellation diagrams. The performance is tested using the OptiSystem simulation at 50 Gbaud and under presence of additive white Gaussian noise (AWGN), which demonstrated high quality symbol constellation and a BER performance similar to theoretical expectations. For 16-QAM, a BER better than 10-4 and power penalty of about 2 dB are achieved for coupling ratio errors less than 10 %, or phase errors within ±7 degrees. The 64-QAM transmitter, on the other hand, demonstrated a BER better than 10-4 and power penalty of about 1 dB for coupling ratio errors less than 4%, or phase errors within ±2 degrees.

Subject Area

Computer Engineering

Recommended Citation

Albakay, Naji, "Design and Analysis of Binary Driven Coherent M-Ary QAM Transmitter for Next Generation Optical Networks" (2018). ETD collection for University of Nebraska-Lincoln. AAI10982904.
https://digitalcommons.unl.edu/dissertations/AAI10982904

Share

COinS