Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.
Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Smart Additive Manufacturing: In-Process Sensing and Data Analytics for Online Defect Detection in Metal Additive Manufacturing Processes
Abstract
The goal of this dissertation is to detect the incipient flaws in metal parts made using additive manufacturing processes (3D printing). The key idea is to embed sensors inside a 3D printing machine and conclude whether there are defects in the part as it is being built by analyzing the sensor data using artificial intelligence (machine learning). This is an important area of research, because, despite their revolutionary potential, additive manufacturing processes are yet to find wider acceptance in safety-critical industries, such as aerospace and biomedical, given their propensity to form defects. The presence of defects, such as porosity, can afflict as much as 20% of additive manufactured parts. This poor process consistency necessitates an approach wherein flaws are not only detected but also promptly corrected inside the machine. This dissertation takes the critical step in addressing the first of the above, i.e., detection of flaws using in-process sensor signatures. Accordingly, the objective of this work is to develop and apply a new class of machine learning algorithms motivated from the domain of spectral graph theory to analyze the in-process sensor data, and subsequently, detect the formation of part defects. Defects in additive manufacturing originate due to four main reasons, namely, material, process parameters, part design, and machine kinematics. In this work, the efficacy of the graph theoretic approach is determined to detect defects that occur in all the above four contexts. As an example, in Chapter 4, flaws such as lack-of-fusion porosity due to poor choice of process parameters in additive manufacturing are identified with statistical accuracy exceeding 80%. As a comparison, the accuracy of existing conventional statistical methods is less than 65%.
Subject Area
Engineering|Computer science|Industrial engineering
Recommended Citation
Montazeri, Mohammad, "Smart Additive Manufacturing: In-Process Sensing and Data Analytics for Online Defect Detection in Metal Additive Manufacturing Processes" (2019). ETD collection for University of Nebraska-Lincoln. AAI27667430.
https://digitalcommons.unl.edu/dissertations/AAI27667430