Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.
Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Detecting Changes in Neurological Status Using Electroencephalography Signals
Abstract
Different neuroimaging techniques can monitor the brain activity. Electroencephalogram (EEG) is the most accessible neuroimaging technique; it is not only cost-efficient, but also its initial setup does not need extensive training or expertise. Employing EEG systems can facilitate monitoring the progress of neurophysiological disorders or detecting their onsets. In this dissertation, we introduce a comprehensive method to cover a variety of brain disorders such as detecting seizures, which affects more than 70 million people around the world, and reporting potential concussive injuries; about 3 million people experience one concussive incident every year in the US. Besides detecting and diagnosing neurological disorders, EEG signals can also be used in developing applications to increase the quality of life of individuals whose ability to control their movements or communicate is hindered, as observed in paralyzed or amyotrophic lateral sclerosis (ALS) patients. Brain–computer interface (BCI) systems convey commands from the brain to an external machine instead of the muscle, which is not connected to the brain due to neurodegenerative diseases that target the muscle neurons. EEG applications are growing rapidly; to increase the feasibility of the EEG applications, a universal approach is needed to aggregate different applications. One of the challenges of previously automated diagnostic systems is enhancing the system performance, where most of the algorithms are patient (subject) -specific and need a prior sample of abnormal EEG signals for further detection or analysis of the same category of disorders. It is therefore essential to develop a system for monitoring the healthy brain, like systems used for a regular check-up of the body. These systems need to be cost-efficient, with minimum calibration setup, and accessible for the majority of the population. Here, we introduce a comprehensive non-patient-specific EEG technique which can be used in multiple applications. In particular we use it to report concussive injuries and seizure attacks to the brain. We also show how this approach can be used to perform as a BCI system to help people increase their quality of life.
Subject Area
Electrical engineering|Biomedical engineering|Neurosciences
Recommended Citation
Mansouri, Amirsalar, "Detecting Changes in Neurological Status Using Electroencephalography Signals" (2021). ETD collection for University of Nebraska-Lincoln. AAI28865765.
https://digitalcommons.unl.edu/dissertations/AAI28865765