Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.
Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Methanogen Metabolic Flexibility
Abstract
Methanogens are obligately anaerobic archaea which produce methane as a byproduct of their respiration. They are found across a wide diversity of environments and play an important role in cycling carbon in anaerobic spaces and the removal of harmful fermentation byproducts which would otherwise inhibit other organisms. Methanogens subsist on low-energy substrates which requires them to utilize a highly efficient central metabolism which greatly favors respiratory byproducts over biomass. This metabolic strategy creates high substrate: product conversion ratios which is industrially relevant for the production of biomethane, but may also allow for the production of value-added commodities. Particularly of interest are terpene compounds, as methanogen membranes are composed of isoprenoid lipids resulting in a higher flux through isoprenoid biosynthetic pathways compared to Eukarya and Bacteria. To assess the metabolic plasticity of methanogens, our laboratory has engineered the methanogen Methanosarcina acetivorans to produce the hemiterpene isoprene. We hypothesized that isoprene producing strains would result in a decreased growth phenotype corresponding to a depletion of metabolic precursors needed for isoprenoid membrane production. We found that the engineered methanogens responded well to the modification, directing up to 4% of total towards isoprene production and increasing overall biomass despite the additional metabolic burden. Using flux balance analysis and RNA sequencing we investigated how the engineered strains respond to isoprene production and how production can be enhanced.
Subject Area
Microbiology|Biology|Biochemistry
Recommended Citation
Carr, Sean R, "Methanogen Metabolic Flexibility" (2022). ETD collection for University of Nebraska-Lincoln. AAI29322184.
https://digitalcommons.unl.edu/dissertations/AAI29322184