Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Magnetization precession of magnetic thin films studied by all optical pump-probe technique

Steven A Michalski, University of Nebraska - Lincoln

Abstract

The study of magnetization dynamics such as magnetization precession and precessional damping provides insights into the behavior of complex magnetic systems, and indeed may lead to a better understanding of the fundamental limits of magnetic reversal process. In this work, a time-resolved magneto-optic Kerr effect system (TRMOKE) was developed to study magnetization dynamics: Precession and damping. The system uses a femtosecond laser in a pump-probe experiment with direct optical excitation, very similar to the method introduced by Ganping Ju and coworkers. Also, a model based on the Landau-Lifshitz-Gilbert equation (LLG) was developed and used to interpret and analyze the experimental magnetization precession data of a single magnetic layer. The model can be used to predict the precession frequencies with and without damping, the eigenvectors of the magnetization and allows the Gilbert damping parameter (α) to be determined. The model is extended to a system of two magnetic layers coupled through a nonmagnetic spacer layer. The capabilities of the TRMOKE system and the LLG models, were demonstrated by studying the magnetization dynamics of Ni/Pt bilayers. Static and dynamic magnetic properties of exchange-coupled magnetic layers have been investigated by magneto-optical measurements. The samples are [Pt/Co] multilayers with perpendicular magnetic anisotropy (PMA) exchange-coupled to a Co layer with in-plane magnetic anisotropy. The exchange is indirect, realized and tuned by an intervening Pt layer of varying thickness. Both the strength and the angle of an external applied magnetic field were varied and for many samples, two modes with two distinct precession frequencies were observed in the precession measurements. The frequencies of both modes depend on the strength and the angle of the applied magnetic field. The LLG model predicts two precessional modes (“acoustic” and “optic”) whose behaviors depend on the strength and sign of the exchange coupling. The model is in good qualitative agreement with the data and allows us to estimate the magnitude of the exchange coupling between the two layers.

Subject Area

Condensed matter physics|Optics

Recommended Citation

Michalski, Steven A, "Magnetization precession of magnetic thin films studied by all optical pump-probe technique" (2007). ETD collection for University of Nebraska-Lincoln. AAI3294903.
https://digitalcommons.unl.edu/dissertations/AAI3294903

Share

COinS