Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

The chemistry of lipid signal molecules in insects

Sean M Putnam, University of Nebraska - Lincoln

Abstract

I report on the chemical identification of lipid signaling molecules in three species of insects and describe the chemical isolation of a bacterial product that inhibits eicosanoid biosynthesis. Chapter 2 reports that eicosanoids mediate nodulation reactions to bacterial infection in newlyemerged, but not forager honeybees. Cyclooxygenase and lipoxygenase inhibitors attenuate nodulation, which is reversed in the presence of arachidonic acid. Older adult honeybees do not produce bacterialinduced nodules, and they have fewer circulating hemocytes, from which I infer that foraging honeybees express a physiological tradeoff between maintaining a biologically expensive hemocytic immune system and flight activity associated with foraging. Chapters 3 and 4 report on eicosanoid production in two insect tissues, Manduca sexta midgut and Zophobus atrata fat body. Optimal reaction conditions for prostaglandin biosynthesis were developed. Microsomalenriched fractions of the tissues produced four PGs, PGA/B 2, PGD2, PGE2 and PGF2α. Chemical structures of each PG was confirmed by gas chromatographymass spectrometry. PG biosynthesis was reduced by two cyclooxygenase inhibitors, indomethacin and naproxen. In contrast to the mammalian model, PG biosynthesis was more prevalent in cytosolic fractions compared to microsomal fractions. The chemical confirmation of PG structures provides strong evidence that PGs are definitely produced by insect tissue and that these lipid mediators facilitate important roles in biological actions. Chapter 5 describes the chemical properties of a factor produced from an insect pathogenic bacterium, Xenorhabdus nematophilus, which attenuates immune responses. The bacterium suppresses nodulation responses to bacterial infections by inhibiting eicosanoid biosynthesis. The immunitysuppressing factor from living X. nematophilus was present in the organic, and not aqueous, fraction of the bacterial culture medium. This chemical work was the first step in identification of a new class of eicosanoid biosynthesis inhibitor. This work advances the eicosanoid hypothesis by chemically confirming that PGs are synthesized in insect tissues and that they represent significant mediators of biological actions in insects. Beyond that, the work illustrates the power of multidisciplinary research to advance our understanding of insect biology generally.

Subject Area

Entomology|Biochemistry

Recommended Citation

Putnam, Sean M, "The chemistry of lipid signal molecules in insects" (2009). ETD collection for University of Nebraska-Lincoln. AAI3380367.
https://digitalcommons.unl.edu/dissertations/AAI3380367

Share

COinS