Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.
Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Characterization of glycation sites on human serum albumin using mass spectrometry
Abstract
The modification of proteins by reducing sugars is a process that occurs naturally in the body. This process, which is known as glycation, has been linked to many of the chronic complications encountered during diabetes. Glycation has also been linked to changes in the binding of human serum albumin (HSA) to several drugs and small solutes in the body. While these effects are known, there is little information that explains why these changes in binding occur. The goal of this project was to obtain qualitative and quantitative information about glycation that occurs on HSA. The first section of this dissertation examined methods that could be used to quantify and identify glycation that occurs on HSA. The extent of glycation that occurred on HSA was quantified using 18O-labeling mass spectrometry and the glycation sites were identified by observing the mass-to-charge (m/z) shifts that occurred in glycated HSA. This initial investigation revealed that 18O-labeling based quantitation can be improved over previous methods if a relative comparison is done with 18O-labeled peptides in a control HSA sample. Similarly, the process of making m/z shift-based assignments could be improved if only the peptides that were unique to the glycated HSA samples were used with internal calibration. These techniques were used in subsequent chapters for the assignment of early and late-stage glycation products on HSA. The regions on HSA that contained the highest amount of modification were identified, quantified, and ranked in order of their relative abundance. Of the commonly reported glycation sites, the N-terminus was found to have the highest extent of modification, followed by lysines 525, 199, and 439. The relative amount of modification on lysine 281, with respect to the aforementioned residues, varied with different degrees of glycation. The 18O approach used for this analysis was novel because it allowed for the simultaneous quantification of all glycation-related modifications that were occurring on HSA. As such, several arginine residues were also found to have high amounts of modification on glycated HSA.
Subject Area
Analytical chemistry|Biochemistry
Recommended Citation
Barnaby, Omar St. Aubyn, "Characterization of glycation sites on human serum albumin using mass spectrometry" (2010). ETD collection for University of Nebraska-Lincoln. AAI3412845.
https://digitalcommons.unl.edu/dissertations/AAI3412845