Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Magnetic anisotropy and exchange in (001) textured FePT-based nanostructures

Tom Ainsley George, University of Nebraska - Lincoln

Abstract

Hard-magnetic L10 phase FePt has been demonstrated as a promising candidate for future nanomagnetic applications, especially magnetic recording at areal densities approaching 10 Tb/in2. Realization of FePt's potential in recording media requires control of grain size and intergranular exchange interactions in films with high degrees of L10 order and (001) crystalline texture, including high perpendicular magnetic anisotropy. Furthermore, a write-assist mechanism must be employed to overcome the high coercivity of L10 FePt nanograins. The research described in this dissertation examines potential solutions to the aforementioned problems. Specifically, a nonepitaxial method of fabricating highly (001) textured thin films is investigated by careful tuning of the as-deposited structure. Such highly textured films could be useful as a template for bit-patterned media. Secondly, control of grain size and intergranular magnetic interactions is demonstrated using non-magnetic additions of Al2O3, C, and Au. Finally, large reductions in the coercivity of high anisotropy, epitaxially grown L10 FePt islands are achieved in an exchange-coupled composite system by adding an exchange coupled layer of FePt:SiO2 with moderate anisotropy. The results show promise for the implementation of L10 FePt in future magnetic recording media and other nanomagnetic applications.

Subject Area

Physics|Condensed matter physics

Recommended Citation

George, Tom Ainsley, "Magnetic anisotropy and exchange in (001) textured FePT-based nanostructures" (2013). ETD collection for University of Nebraska-Lincoln. AAI3604768.
https://digitalcommons.unl.edu/dissertations/AAI3604768

Share

COinS