Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.
Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.
Decision support tools to address climate change: Climate model - land surface models, Zea mays l. (corn) phenology and Evapotranspiration-yield sensitivity models for Nebraska, USA
Abstract
Nebraska's climate is highly variable and is expected to change in the future with anthropogenic global warming (AGW), resulting in warmer spring and summer temperatures coupled with more erratic rainfall events. This has strong implications for agriculture in the region, yet it is not clear that current modeling and decision-support tools are adequate to address these looming changes and provide planning, mitigation and adaptation strategies. To address climate change and its implications to agriculture in Nebraska, a set of robust decision support tools are very crucial. This study herein are divided into three chapters, with each chapter addressing a specific tool/s and its usefulness as a support decision tool. The first chapter, examines climate models and land surface models that provide weather forecasts. The usefulness of climate models and land surface models (LSM) hinges on their accuracy. Two candidate LSMs were evaluated: the Noah and the Community Land Surface Model (Version 3.5). The findings are helpful in selecting useful models that can be applied to make weather predictions in the near future for yield predictions and decision making. The second chapter examines the current modeling of phenological sensitivity and development of corn to temperature using thermal units also known as, Growing Degree Days (GDDs) based on an upper and lower temperature threshold of 30°C and 10°C respectively. Additionally, the accuracy of closest weather station data in modelling corn phenology for rainfed and irrigated sites was evaluated. In the third chapter the sensitivity of corn to water stress during different growth periods/stages is examined with the intention of supporting irrigation scheduling decisions with limited water resources. Since crops are not equally sensitive to growth in all stages of their development, multiplicative empirical models are developed using two approaches. The new sensitivity coefficients are also compared to those derived for the USA cornbelt by Meyer et al. (1993). The models developed will facilitate analysis of deficit irrigation strategies and their impacts on crop yields thereby offering a means of sustaining high corn yields in the future in lieu of imminent climate changes.
Subject Area
Agronomy|Natural Resource Management|Water Resource Management
Recommended Citation
Okalebo, Jane Asiyo, "Decision support tools to address climate change: Climate model - land surface models, Zea mays l. (corn) phenology and Evapotranspiration-yield sensitivity models for Nebraska, USA" (2014). ETD collection for University of Nebraska-Lincoln. AAI3666984.
https://digitalcommons.unl.edu/dissertations/AAI3666984