Electrical & Computer Engineering, Department of

 

ORCID IDs

Naji Albakay

First Advisor

Lim Nguyen

Date of this Version

12-2018

Comments

A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy, Major: Computer Engineering, Under the Supervision of Professor Lim Nguyen. Lincoln, Nebraska: December, 2018.

Copyright (c) 2018 Naji Albakay

Abstract

This work presents a design for a binary driven optical square M-ary quadrature amplitude modulation (QAM) transmitter for high speed optical networks. The transmitter applies tandem quadrature phase shift keying (QPSK) modulators to eliminate the need for linear broadband amplifiers and high-resolution digital to analog converters (DACs), which are both required by conventional transmitters. The transmitter design could be scaled to any order of square M-ary QAM by simply adding more QPSK modulators in tandem. It also provides a Gray coded symbol constellation, insuring the lowest bit error rate possible during symbol recovery. We also provide the design for the coupling ratios of the optical couplers that take into account the insertion loss of the optical components, in order to generate a proper 16-QAM and 64-QAM symbol constellation with equally-spaced symbols. Additionally, we analyze the impact of coupling ratio errors as well as phase errors on the bit error rate (BER) performance and constellation diagrams.

The performance is tested using the OptiSystem simulation at 50 Gbaud and under presence of additive white Gaussian noise (AWGN), which demonstrated high quality symbol constellation and a BER performance similar to theoretical expectations. For 16-QAM, a BER better than 10-4 and power penalty of about 2 dB are achieved for coupling ratio errors less than 10 %, or phase errors within ±7 degrees. The 64-QAM transmitter, on the other hand, demonstrated a BER better than 10-4 and power penalty of about 1 dB for coupling ratio errors less than 4%, or phase errors within ±2 degrees.

Adviser: Lim Nguyen

Share

COinS