Electrical & Computer Engineering, Department of
Document Type
Article
Date of this Version
2018
Citation
Wireless Communications and Mobile Computing Volume 2018, Article ID 4172049, 21 pages
Abstract
An Adaptive Transmission Range Based Topology Control (ATRTC) scheme is proposed to reduce delay and improve reliability for data collection in delay and loss sensitive wireless sensor network. The core idea of the ATRTC scheme is to extend the transmission range to speed up data collection and improve the reliability of data collection.The main innovations of our work are as follows: (1) an adaptive transmission range adjustment method is proposed to improve data collection reliability and reduce data collection delay. The expansion of the transmission range will allow the data packet to be received by more receivers, thus improving the reliability of data transmission. On the other hand, by extending the transmission range, data packets can be transmitted to the sink with fewer hops.Thereby the delay of data collection is reduced and the reliability of data transmission is improved. Extending the transmission range will consume more energy. Fortunately, we found the imbalanced energy consumption of the network.There is a large amount of energy remains when the network died. ATRTC scheme proposed in this paper can make full use of the residual energy to extend the transmission range of nodes. Because of the expansion of transmission range, nodes in the network form multiple paths for data collection to the sink node.Therefore, the volume of data received and sent by the near-sink nodes is reduced, the energy consumption of the near-sink nodes is reduced, and the network lifetime is increased as well. (2)According to the analysis in this paper, compared with the CTPR scheme, the ATRTC scheme reduces the maximum energy consumption by 9%, increases the network lifetime by 10%, increases the data collection reliability by 7.3%, and reduces the network data collection time by 23%.
Comments
Copyright © 2018 Haojun Teng et al.
Open access
https://doi.org/10.1155/2018/4172049