Entomology, Department of

 

Document Type

Article

Date of this Version

2022

Citation

Scientific Reports (2022) 12:12535

doi:10.1038/s41598-022-16792-1

Comments

This article is licensed under a Creative Commons Attribution 4.0 International License,

Abstract

The economic importance of wheat and its contribution to human and livestock diets has been already demonstrated. However, wheat production is impacted by pests that induce yield reductions. Among these pests, wheat curl mite (WCM, Aceria tosichella Keifer) impacts wheat all around the world. WCM are tiny pests that feed within the whorl of developing leaves, and their feeding causes leaf curling by preventing them from unfurling. The curling of the leaves provides a protective niche for the WCM. Additionally, WCM are also the vector of serious viruses in wheat. Little is known regarding the impact of the WCM on wheat transcriptome, and to date, only one article has been published describing the wheat transcriptomic changes after 1 day of WCM feeding. To better understand the wheat transcriptome variation after extended feeding by WCM [10 days post infestation (dpi)], we used an RNA-seq approach. We collected WCM-infested and uninfested leaves from two wheat cultivars: Byrd (WCM resistant) and Settler CL (WCM susceptible) at 10 dpi. Our transcriptomic analysis revealed the common and specific transcriptomic variations in WCM resistant and susceptible wheat cultivars, chromosome 3D specific location of the differentially expressed genes with functions involved in defense and stress response, and also identified the gene functions related to lipid signaling and membrane integrity, and phytohormone pathways potentially contributing to WCM resistance. Collectively, our study provides important insights on wheat defense mechanisms against WCM after extended feeding.

Included in

Entomology Commons

Share

COinS